如何实现原子、分子入射的功能

这里以铁表面入射水分子作为例子,如果是原子入射则更简单。

1, 创建 Fe 体心立方晶体 (也可以直接从网上或数据库中的*.cif 文件 , 通过 File - Import

Coordinates 的方式直接导入):

q		ADFinput 2	014.06		- 🗆 ×
SCM File Edit Select Atoms	Bonds View I	Help			
Undo	Ctrl Z		ReaxFF Main	Model Details	Q
Redo	Shift Ctrl Z				
Cut	Ctrl X		- 1		
Сору	Ctrl C		1458.	Energy Minimizatio	
Paste	Ctrl V				
Clear			Force field:		i
Set Center Of Mas	s				
Set Origin			Number of iterati	ons: 40000	
Symmetry	•		Start with:	0 non-reactive iterations	
Mirror	*		Time step:	0.25 fs	
Rotate 90					
Align			Method:	Velocity Verlet + 👻	
Crystal	•	Cubic	AntiFluorite		
Builder	Ctrl B	Hexagonal	Cristobalite	298.0 K	
Conformers		Monoclinic	• CsCl	100.0 fs	
Solvent Molecules		Urthorhombic	Cubic-F		
		Triclinic	 Cubic 	0.0 MPa	
		Trigonal	 Cuprite 	500.0 fs	
		From Space Group	Diamond		
		Generate Slab	La203		
		Generate Super Cell	NaCl		
		Map Atoms To Unit Cell	Perovskite		
		Set Cell Center	Pyrite		
		Map Atoms Into Cell	Spinel		
		Remove Molecules Outside Cell	Zincblende		
	I CI X. O	* * \$ \$	bac		
			icc		

CM Eile Edit Select Atoms Bonds View Help	ADFinput 2	2014.	.06											×
SCIVI File Eait Select Atoms Bonas View Help		Rea	xFF	Mai	in Mo	odel I	Detail	5						Q
	🍳 🛛 Dialog Wi	indo	w	×										
	Body-centere	ed cub	ic			Ener	gy Min	imizat	io 🕶					
	Presets		-					123					_	
			-											i
	a la bas				ions	:	40000							
	Z. p 63						0	non	reacti	ve ite	rations	5		
	basis vectors	W				1	0.25	fs						
		н												
		Li Na	Be Mg											B C
		к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga G
		Rb Cs	Sr Ba	Y La	Zr H£	Nb Ta	Mo W	To Re	Ru Os	Rh Ir	Pd Pt	Ag Au	C d He	In S Tl F
		Fr	Ra	Ac	R£	DP	Sg	Bh	Нs	Mt	Ds	Rg	Cn	Vut F
		La	Ce	Fr	Nd	Pm	Sm	Eu	Gd	ть	Dv	Ho	Er	Tm Y
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	C£	Es	Fm	Md B
K C O N H CI X, O	* ? \$													

费米科技(北京)有限公司

得到单质 Fe 晶体 (只显示原胞中的一个原子)

ADFinput 2014.06						
SCM File Edit Select Atoms Bonds View Help						
	ReaxFF Main Model Details Q					
	Task: Energy Minimizatio 👻					
	Force field: 💼 i					
	· · · · · · · · · · · · · · · · · · ·					
	Number of iterations: 40000					
	Start with: U non-reactive iterations					
	lime step. 0.20 IS					
	Nethod Velocity Verlet + -					
	Temperature: 298.0 K					
	Damping constant: 100.0 fs					
	Pressure: 0.0 MPa					
	Damping constant: 500.0 fs					
► С О N H CI X, О ★ < Ф						

从晶体切割出一个表面(2层)

q		ADFinput 2	014.06		- 🗆 🗙
SCM File Edit Select Atc Undo Redo Cut Copy Paste Clear Set Center Of Set Origin Symmetry Mirror Rotate 90 Align Crystal Builder Conformers Solvent Molecu	oms Bonds View F Ctrl Z Shift Ctrl Z Ctrl X Ctrl C Ctrl V Mass Mass Ctrl B les	ADFinput 2 Help Cubic Hexagonal Monoolinic Orthorhombic Tetragonal Triolinic Trigonal From Space Group	O14.06 ReaxFF Main Mo Task: Force field: Number of iterations Start with: Time step: Method: I emperature: Jamping constant: Pressure: Jamping constant:	Details Energy Minimizatio Image: Constraint of the second secon	×
N C O N	h ci x, o	Generate Slab Generate Super Cell Map Atoms To Unit Cell Set Cell Center Map Atoms Into Cell Remove Molecules Outside Cell			

沿着密勒指数 111 的面切 2 层

۹ ADFinput 2014.06 -							
SCM File Edit Select Atoms Bonds View Help	0						
χ	ReaxFF Main Model Details	۹					
λ	Miller indices: 1 1 1 Cartesian Number of layers: 4						
λ	Select an atom first to slice through that atom <u>Close</u> <u>OK</u> <u>40000</u> <u>0</u> non-reactive iterations						
	Time step: 0.25 fs Method: Velocity Verlet + v						
	Temperature: 298.0 K Damping constant: 100.0 fs						
	Fressure: 0.0 MPa Damping constant: 500.0 fs						
	* * *						

显示分子动力学盒子的方向

٩	ADFinput	2014.06 -	- 🗆 🗙
SCM File Edit Select Atoms Bonds	View Help	ReaxFF Main Model Details	٩
	Reset View 3D Style View Direction Camera Parallel Perspective Fly To Selection Align Screen Mouse As Anti-Alias Ares	Task: Energy Minimizatio	i i
	Molecule Background Atom Info Color Atoms By Atom Radius From Geometric Info Info Style Mid. Wahara Atom	Method: Valocity Verlet + v Temperature: 298.0 K Damping constant: 100.0 fs Pressure: 0.0 MPa	
	h de Hydrogen Atoms Show Bonds To Hidden Atoms Show Selection Only Show All Periodic • Repu Unit Unit Show	Damping constant: 500.0 fs at Unit Cells : Cell Range -1, 1 Cell Range -2, 2 Lattice Vectors	
КСОМНС І	×, ○ ★ \$ \$	Unit Cell	

同时点击 view-Axes,显示坐标轴:

ADFinput 2014.06						
SCM File Edit Select Atoms Bonds View Help						
	ReaxFF Main Model Details Q					
2	Task: Energy Minimizatio 👻					
	Force field:					
	Number of iterations: 40000					
	Start with: 0 non-reactive iterations					
	Time step: 0.25 fs					
· · ·	Method: Velocity Verlet + 🗸					
	Temperature: 298.0 K					
X	Damping constant: 100.0 fs					
	Programs 0.0 IPs					
	Demning constant: 500.0 fs					
	Panping constant. 500.0 Is					

因为现在盒子只有 2 个原子,体系太小。我们要沿着薄膜的方向(即沿着 x,y 方向,因为 z 方向上空为真空)做二维延展的超胞(关于超胞、密勒指数等晶体学概念,如果不清楚,请 参看黄昆、韩汝琦的《固体物理学》第一章):

q		ADFinput 2	014.06		- 🗆 ×
SCM File Edit Select Atoms	Bonds View H	lelp	ReaxEE Main Model Det	ails	0
Undo Redo Cut Copy Paste Clear Set Center Of Mass Set Origin Symmetry Mirror	Ctrl Z Shift Ctrl Z Ctrl X Ctrl C Ctrl V		Task: Energy Force field: Number of iterations: 400 Start with: Time step: 0.	Minimizatio - Minimizatio - 00 0 non-reactive iterations 25 fs	
Rotate 90 Align Grystal Builder Conformers Solvent Molecules.	Ctrl B Ctrl B Ctrl X, O	Cubic Hexagonal Moncolinic Orthorhombic Tetragonal Triclinic Trigonal From Space Group Generate Slab Generate Slab Generate Slab Generate Slab Generate Slab Set Cell Center Map Atoms Into Cell Remove Molecules Outside Cell	Method: Velooit emperature: 290 Jamping constant: 100 ressure: 0 Jamping constant: 500	y Verlet + + 3.0 K 3.0 fs 3.0 MPa 3.0 fs	

设置为 5,5,1, 表示 x、y 方向分别重复 5次, z 方向不重复, 维持原状。

为了方便观看,将原子挪到盒子中央去(其实不挪动也是一样的,因为盒子本身是三维周期 性重复的,换句话说,现在我们看到的是一个盒子里面一层 Fe 薄膜,而实际上是无限层, 每层无限大——这就是三维周期的直观含义):

q			ADFinput 20	014.06			×
SCM File	Edit Select Atoms	Bonds View H	lelp				
SCM File	Edit Select Atoms Vado Redo Cut Copy Paste Clear Set Center Of Mass Set Origin Symmetry Mirror Rotate 90 Align Crystal Builder Conformers Solvent Molecules	Bonds View H Ctrl Z Shift Ctrl Z Ctrl X Ctrl C Ctrl V	Cubic Cubic Cubic Hexagonal Monoclinic Orthorhombic Tetragonal Triclinic Tetragonal From Space Group Generate Slab Generate Slab Generate Slab Generate Slab Generate Slab Generate Slab Map Atoms To Unit Cell Ste Cell Center	ReaxFF Main I Task: Force field: Number of iteration Start with: Time step: Method: emperature: Amping constant: ressure: Amping constant:	Model Details	zatio * con-reactive iterations is et + * C is Pa is	Q i
	со N Н	ci x, o	Remove Molecules Outside Cell				

这样所有原子都会移动到盒子的中央。Fe 薄膜的也就建好了。

2,创建入射分子:

本例中,要入射的分子是水分子,因此我们需要事先要得到水分子的 XYZ 坐标,参考<u>如何</u> 优化分子的几何结构:

3

0	-0.56070669	-1.55395854	-0.00000000
н	-0.49546319	-1.82020171	0.92003145

H -0.75643720 -0.61537121 -0.04840855

其中第一个数字3表示有3个原子,接下来3行是水分子的每个原子的 xyz 坐标。

3,基本的反应分子动力学参数设置:

一切就绪,那么现在就要设置动力学过程了。动力学模拟的设置参考 "ReaxFF 的基本上使

用"甲烷燃烧的反应分子动力学模拟"(土豆视频)"

基本的动力学设置与普通的分子动力学模拟没有太大差别,无非是步数、步长、系综、温度、

压强之类。设置好之后,保存任务,即产生一个*.run文件。

4,入射的设置:

需要在保存任务生成的*.run 文件中进行设置。

下面是一个设置的范本:

在 cat > geo «eor 的前面,增加如下几行:

cat > addmol.bgf <<eor

BIOGRF 200

DESCRP Water

FREQADD 1000

VELADD 2								
STARTX -9000	C							
STARTY -9000	D							
STARTZ -9000	D							
ADDIST 3.0								
NATTEMPT 0	50							
TADDMOL 25	50.0							
Format ato	M	(a6,1x,i5,1x,a5,1x,a3	3,1x,a1,1x,a	5,3f10.5,1x,	a5,i3,i2,1x,f8.5)			
HETATM	1	0	-0.56070	-1.55395	-0.00000	0	0 0)
0.00000								
HETATM	2	н	-0.49546	-1.82020	0.92003	Н	0 0)
0.00000								
HETATM	3	н	-0.75643	-0.61537	-0.04840	Н	0 0)
0.00000								
eor								
cat > addmol	l.vel	< <eor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></eor<>						
Atom velocities (Angstrom/s):								
0.676920600871422E+13 -0.400000000000001E+15 0.685204179579294E+03								
eor								
上面这些内容依次解释如下:								
3IOGRF,这是 bgf 文件格式的版本号,这个一般不能改,除非非常熟悉不同的版本;								

DESCRP,这是取名字,随便取就可以;

FREQADD,每隔多少步,射入一个分子,例如1000的话,那么每1000步将入射一个分子;

VELADD,这是设置入射分子的速率的,如果设置为1,则表示随机;如果设置为2,则表 示将从

```
cat > addmol.vel <<eor
```

Atom velocities (Angstrom/s):

0.676920600871422E+13 -0.40000000000001E+15 0.685204179579294E+03 eor

读取(上面这4行的含义,后面会讲到)。这个关键字似乎也作废了。

STARTX、STARTY、STARTZ 这是设置入射坐标的,例如设置为0.0、0.0、0.0(注意必须写成小数的样式),那么这分子每次都会从那个点入射进来。事实上精确的入射坐标是入射分子的每个原子 x、y、z 坐标分别加上这三个数(即 x+STARTX,y+STARTY,z+STARTZ)。如果 STARTX、STARTY、STARTZ 小于-5000 则表示入射位置随机分布;

ADDIST,分子入射时,与现有部分的最小距离(单位为 Angstrom),如果设置为负数, 则表示不检查这个指标(可能会产生不合理的结构);

NATTEMPT,这个参数本来是用来设置入射分子的总个数,但似乎作废了;

TADDMOL,这是设置入射分子的温度的,入射分子的速率与温度之间有个玻尔兹曼热力学 分布的换算关系,比如 250K 的分子速率肯定比 200K 的分子速率低;

FORMAT ATOM,这一行最好是复制、粘贴,因为容易出现字符问题,这一行整行不要去 改动它;

HETATM 1 O -0.56070 -1.55395 -0.00000 O 0 0 0.00000

 HETATM
 2
 H
 -0.49546
 -1.82020
 0.92003
 H
 0
 0

 0.00000
 HETATM
 3
 H
 -0.75643
 -0.61537
 -0.04840
 H
 0
 0

 0.00000
 0
 0.00000
 -0.75643
 -0.61537
 -0.04840
 H
 0
 0

 0.00000
 -0.75643
 -0.61537
 -0.04840
 H
 0
 0

 0.00000
 -0.75643
 -0.61537
 -0.04840
 H
 0
 0

的序号, 第三列是元素符号, 第 4,5,6 列是原子的坐标, 第 7 列是元素符号, 后面三列在 ReaxFF 中不起作用。

需要非常注意的是:最好是直接复制这些数据,然后直接在上面修改,保证字符对齐方式与 上面的格式相同,因为 Fortran 读取数据的时候,对格式要求较为严格,例如-0.75643, 表示小数点后只能有5位小数,如果留6位,可能就会报错。

如果入射的不是分子,而是一个原子,那么就很简单:

HETATM 3 Si 0.00000 0.00000 Si 0 0 0.00000

cat > addmol.vel <<eor

Atom velocities (Angstrom/s):

0.676920600871422E+13 -0.40000000000001E+15 0.685204179579294E+03 eor

cat > addmol.vel «eor 这句话是指,将下文直到 eor 为止的内容(此例中也就是中间的两

行) 写入一个名为 addmol.vel 的文件中

这个 addmol.vel 文件就是用来设置入射原子、分子的平动速率的。注意单位是 Angstrom/s 因此这个数字一般换算成 Angstrom/fs , 我们才有感觉 , 因为分子动力学每个 step 默认是 0.25fs , 其中 1000fs=1ns。

5,保存任务,并运行,我们得到:

第0 step:

第 5600 step :

第 18050 step :

结束。